Opening Hours

House, galleries, café and shop:

Monday: Closed
Tuesday: Closed
Wednesday: 11am – 5pm
Thursday: 11am – 5pm
Friday: 11am – 5pm
Saturday: 11am – 5pm
Sunday: 11am – 5pm

Access Information & Contact Us

Find access information here. 

+44 (0)1223 748 100


Kettle’s Yard News

Be the first to hear our latest news by signing up to our mailing list.

For our latest blogs click here

Find out What’s On at Kettle’s Yard here.

28 February 2018

Studying development to understand disease

The Wellcome Trust/Cancer Research Campaign Institute of Developmental Biology, founded by John Gurdon and Ron Laskey, was opened by the Duke of Edinburgh in 1991. Professor Laskey’s personal memory of that time recounts how a ‘host of coincidences’ were responsible.  Among the Institute’s first group leaders was Nobel Prize-winner Martin Evans with John Gurdon, himself, going on to win the Nobel Prize five years later.    It was in 2004 that the Institute became known as the Gurdon Institute.

John Gurdon’s school report called his ambition to pursue science ‘ridiculous’. On the morning he received a call from the Nobel Committee he said one of the few things that he regretted was identifying his cloned frog by a number rather than a name (Dolly the sheep, which built on John’s discoveries, was not born until 38 years later). Now in his eighties, John still runs a dynamic lab which continues to work on cell reprogramming and how early development of an organism occurs.

John Gurdon: Young frogs cloned from albino adult donor tissue.

The Institute is accessible 24 hours a day, 7 days a week, only made possible by a long-standing and dedicated core team, who provide everything from cleaning and stores through to animal facilities and IT (currently managing a massive 1 to 2 PetaBytes of data).  Annually 9,000 litres of biological solutions are produced by the media kitchen, while the CO2 supply, to enable optimum cell growing conditions, is literally (and safely) 365 days on tap.

The work of the Institute would not be possible without generous core funding from the Wellcome Trust and Cancer Research UK. This provides the foundational support for individual groups to attract research grants from a wide number of other sources: the Biotechnology and Biological Sciences Research Council, the Medical Research Council,  European Research Council,  National Centre for the Replacement, Refinement and Reduction of Animals in Research,  the Isaac Newton TrustAlzheimer’s Research UK, Natural Environment Research Council and the Royal Society. Without this help our science simply could not happen.

Our research staff are drawn from 41 countries with almost (we’re still working on it) equal numbers of men and women.   We’re proud to say that our young group leaders, who are establishing their own labs, are predominantly women.

The whole lifespan from (before) birth through to old age is ripe for our experiments. Azim Surani’s lab examine how germ cells – the precursors of eggs and sperm – are formed in the embryo, before this ball of dividing cells is even recognisable as an animal. Meri Huch’s lab track the way the liver grows from stem cells into several specialised cell types, and what happens after injury or disease, by growing liver organoids. Rick Livesey’s team are modelling the genetic changes in dementia by turning human skin cells into cortical neurons and watching how they grow in culture.

Humans share 70% of the same disease-causing genes with fruit flies! So we can study aspects of human development and disease by studying fruit flies and other ‘model organisms’, including brewer’s yeast, tiny worms from soil, frogs and mice. An exciting recent technology is to grow 3D pieces of tissue, called organoids, from human stem cells. Emma Rawlins has developed a model of developing lung in a culture dish that can be tested by altering genes or adding candidate drugs. Daniel St Johnston’s team study the gut lining of the fruit fly to understand cell polarity, while Julie Ahringer grows nematode worms to examine the active and inactive regions of chromosomes.

Even without studying patients directly, our research has led to several spin-out biotech companies and, so far, one cancer-busting drug. Grandmother Sandy Tansley, aged 73, had stage 3 ovarian cancer and tumours spreading to her stomach, but has now been cancer-free for five years thanks to the drug Lynparza – developed from the research of Steve Jackson.

Our technical support staff work with researchers to push the boundaries of visualisation and image analysis. We deploy a range of different microscopes and imaging technologies to illuminate previously unseen structures. Two specialist researchers are building a super-resolution microscope in the basement, where there are fewer vibrations from traffic, so that we can watch molecules moving in living tissue samples.

At the Gurdon Institute, we engage the public with our research by going to schools, welcoming students into our labs, organising panel discussions or participating in festivals. We want to inspire young people’s interest and excitement in science, positively impact the public perception of fundamental research and make Public Engagement part of our research culture. We hope that the Experiments in Art & Science project will be a new way to generate conversations about science with the public.